Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice.
نویسندگان
چکیده
Circadian locomotor output cycles kaput (CLOCK) is a nuclear transcription factor that is a component of the central autoregulatory feedback loop that governs the generation of biological rhythms. Homozygous Clock mutant mice contain a truncated CLOCK(Δ19) protein within somatic cells, subsequently causing an impaired ability to rhythmically transactivate circadian genes. The present study sought to investigate whether the Clock mutation affects mitochondrial physiology within skeletal muscle, as well as the responsiveness of these mutant animals to adapt to a chronic voluntary endurance training protocol. Within muscle, Clock mutant mice displayed 44% and 45% reductions in peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and mitochondrial transcription factor-A protein content, respectively, and an accompanying 16% decrease in mitochondrial content, as determined by cytochrome c oxidase enzyme activity. These decrements contributed to a 50% decrease in exercise tolerance in Clock mutant mice. Interestingly, the Clock mutation did not appear to alter subsarcolemmal or intermyofibrillar mitochondrial respiration within muscle or systemic glucose tolerance. Daily locomotor activity levels were similar between wild-type and Clock mutant mice throughout the training protocol. Endurance training ameliorated the decrease in PGC-1α protein expression and mitochondrial content in the Clock mutant mice, eliciting a 2.9-fold improvement in exercise tolerance. Thus our data suggest that a functional CLOCK protein is essential to ensure the maintenance of mitochondrial content within muscle although the absence of a functional CLOCK protein does not impair the ability of animals to adapt to chronic exercise.
منابع مشابه
Effect of Eight Weeks of Endurance Training in Light and Dark Phases of Circadian Rhythm on the Oxidative Stress Index in Pancreas of Diabetic Mice
Introduction: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress in pancreatic tissue. The effect of exercise in different phases of the circadian cycle on protecting pancreatic tissue from oxidative stress in diabetic patients is unknown. The aim of this study was to investigate the effect of eight weeks of endurance training in light and dark phase...
متن کاملEffects of Circadian Rhythm on Physical and physiological Performance of Military forces- Narrative Review
The 2017 Nobel Prize for medicine was awarded the biological clock Scientist, which shows the importance of this phenomenon in the life of living organisms. The circadian Rhythm (CR) through the created internal “clock” is responsible for regulating the daily performance of different organs of the body. The central body clock is the key factor to creating and maintaining this CR. External optic...
متن کاملObesity and metabolic syndrome in circadian Clock mutant mice.
The CLOCK transcription factor is a key component of the molecular circadian clock within pacemaker neurons of the hypothalamic suprachiasmatic nucleus. We found that homozygous Clock mutant mice have a greatly attenuated diurnal feeding rhythm, are hyperphagic and obese, and develop a metabolic syndrome of hyperleptinemia, hyperlipidemia, hepatic steatosis, hyperglycemia, and hypoinsulinemia. ...
متن کاملHepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice
OBJECTIVE Circadian Clock gene mutant mice show dampened 24-h feeding rhythms and an increased sensitivity to high-fat diet (HFD) feeding. Restricting HFD access to the dark phase counteracts its obesogenic effect in wild-type mice. The extent to which altered feeding rhythms are causative for the obesogenic phenotype of Clock mutant mice, however, remains unknown. METHODS Metabolic parameter...
متن کاملEffect of chronic ethanol exposure on the liver of Clock-mutant mice
In humans, chronic ethanol consumption leads to a characteristic set of changes to the metabolism of lipids in the liver that is referred to as an "alcoholic fatty liver (AFL)". In severe cases, these metabolic changes result in the enlargement and fibrillization of the liver and are considered risk factors for cirrhosis and liver cancer. Clock-mutant mice have been shown to display abnormal li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 114 8 شماره
صفحات -
تاریخ انتشار 2013